

🖆 COLUMBIA 🛛

Introduction to Biostatistics Summer 2022

MAILMAN SCHOOL

of PUBLIC HEALTH

CLASS SESSIONS: Tuesdays and Thursdays, 9:30 – 11:00 am ET

INSTRUCTOR

Charly Fowler, <u>crf2147@cumc.columbia.edu</u> Office Hours: Tuesday 1:00 PM – 2:00 PM in ARB 627

TEACHING ASSISTANT

Baoyi Feng, <u>bf2506@cumc.columbia.edu</u> **Recitation**: Tuesdays and Thursdays, 11:30 am – 1:00 pm ET **Office hours**: Friday 1:00 PM – 2:00 PM in ARB 657

COURSE DESCRIPTION

Biostatistics is essential to ensure that findings and practices in public health and biomedicine supported by reliable evidence. This course aims to cover a variety of tools for the collection, analysis, and presentation of data in all areas of public health. A key to these skills is assessing the impact of change and variability on the interpretation of research findings and subsequent recommendations for public health practice and policy. Topics covered include: methods for describing discrete and continuous data; hypothesis testing including ANOVA and t-test; general principles of study design; regression models; some sophisticated tools widely used in statistics.

COURSE LEARNING OBJECTIVES

Students who successfully complete this course will be able to:

- Describe the role biostatistics serves in public health and biomedical research
- Apply numerical, tabular, and graphical descriptive techniques to summarize data
- Understand the key concepts of probability and inference
- Translate the research objectives into clear, testable statistical hypotheses
- Use R for analysis and interpret the results appropriately

RECOMMENDED TEXTS

There are no texts required for the course. Lecture notes will be uploaded on CANVAS prior to each class session. The recommended textbook for this course is:

Douglas A. Wolfe & Grant Schneider, Intuitive Introductory Statistics, Springer, 2018.

ASSESSMENT AND GRADING POLICY

Student grades will be based on:	
Class (Recitation) Participation	20%
Biostatistics Homework Assignments	20%
Biostatistics Final Exam	20%
R Homework Assignments/Exams	10%

COURSE SCHEDULE

Please see the "Intro to Biostatistics" folder on CANVAS to download the readings, exams, and lecture slides.

Date	Topics	Readings/Assignments
Tue, June 6 Lect: 532B Rct: 532B	Key Definitions - Population vs. sample - Parameter vs. statistic Study Design	Chapter 3
Wed, June 7 Lect: 532B Rct: 532B	Types of Data - Qualitative vs. quantitative Descriptive Statistics - Measures of location - Measures of dispersion	Chapter 1 HW 1 due June 17
Tues, June 13 Lect: 532B Rct: 532B	Probability - Venn Diagrams - Conditional Probability - Independence	Chapter 4
Thurs, June 15 Lect: 532B Rct: 532B	Probability Distribution - PDF/PMF - CDF Normal Distribution - Standard Normal - Z-table	Chapter 4 HW 2 due June 25
Tues, June 20 Lect: 532B Rct: 532B	Central Limit Theorem Point and Interval Estimation	Chapter 5, 6
Wed, June 21 Lect: 532B Rct: 532B	Introduction to Hypothesis Testing - Null vs. alternative hypothesis - Type I and II error - Power - P-Value	Chapter 6 HW 3 due July 1
Tues, June 27 Lect: 532B Rct: 532B	Testing for Continuous Outcomes - One sample T-test - Two sample T-test	Chapter 7, 9
Thurs, June 29 Lect: 532B Rct: 532B	Testing for Continuous Outcomes - Paired t-test - ANOVA Correlation Coefficient	Chapter 8, 12, 2
Tues, July 6	Categorical Data Analysis One-sample proportion test	Chapter 10 HW 4 due July 11

Lect: 532B Rct: 532B	 Two-sample proportion test Chi-squared test	
Thurs, July 11 Lect: 532B	Linear Regression Assumptions Least Squares Estimator 	Chapter 11; Review
Rct: 532B	- Inference for coefficients	
Tues, July 13 Lect: 532B Rct: 532B	Final exam	
Thurs, July 18 Lect: 532B Rct: 532B	Extra Topics	
Tues, July 20 Lect: 532B Rct: 532B	Guest Lecture- Michael Joseph	
Thurs, July 25	Hackathon	
Tues, July 27	Research Symposium	